

Welcome to RISCV-Config

	Introduction

	Overview
	Working

	Quickstart
	Install Python
	Ubuntu

	Centos:7

	Using Virtualenv for Python

	Install RISCV-CONFIG

	RISCV_CONFIG for Developers

	Usage Example

	YAML Specifications
	ISA YAML Spec
	Vendor

	Device

	ISA

	User_Spec_Version

	Privilege_Spec_Version

	hw_data_misaligned_support

	supported_xlen

	pmp_granularity

	physical_addr_sz

	custom_exceptions

	custom_interrupts

	CSR Template
	CSRs with sub-fields

	CSRs without sub-fields

	Constraints

	Example

	WARL field Definition
	Value Descriptors

	WARL Node definition

	Examples

	Platform YAML Spec
	reset

	nmi

	mtime

	mtimecmp

	mtval_condition_writes

	scause_non_standard

	stval_condition_writes

	zicbo_cache_block_sz

	Debug YAML Spec
	supported_xlen

	Debug_Spec_Version

	debug_mode

	parking_loop

	Adding support for new Extensions
	Updates to the ISA string
	Modifications in Schema_isa.yaml

	Adding constraints in the SchemaValidator.py file

	Assing new CSR definitions
	Addition of new csrs to schema

	Adding default setters in checker.py

	Adding support for Adjoining RISC-V specs
	Adding new CLI

	Adding a new schema

	Adding checks through checker.py and SchemaValidator.py

	Modifications in Constants.py

	Performing new spec checks

	Code Documentation
	riscv_config.checker

	riscv_config.schemaValidator

	Utils

	WARL

Indices and tables

	Index

	Module Index

	Search Page

Introduction

RISCV-Config (RISCV Configuration Leagalizer) is a YAML based framework which can be used to validate the specifications of a RISC-V implementation against the RISC-V privileged and unprivileged ISA spec and generate standard specification yaml file.

Caution: This is still a work in progress and non-backward compatible changes are expected to happen.

For more information on the official RISC-V spec please visit: RISC-V Specs [https://riscv.org/specifications/]

RISCV-Config [Repository [https://github.com/riscv/riscv-config]]

Overview

The following diagram captures the overall-flow of RISCV-Config.

[image: riscof-flow]
The user is required to provide 2 YAML files as input:

	ISA Spec: This YAML file is meant to capture the ISA related features implemented by the user. Details of this input file can be found here : ISA YAML Spec.

	Platform Spec: This YAML file is meant to capture the platform specific features implemented by the user. Details of this input file can be found here : Platform YAML Spec.

Working

The ISA and Platform spec are first checked by the validator for any inconsistencies. Checks like ‘F’ to exist for ‘D’ are performed by the validator. The validator exits with an error if any illegal configuration for the spec is provided. Once the validator checks pass, two separate standard yaml files are generated, one for each input type. These standard yaml files contain all fields elaborated and additional info for each node. While the user need not specify all the fields in the input yaml files, the validator will assign defaults to those fields and generate a standard exhaustive yaml for both ISA and Platform spec.

Quickstart

This doc is meant to serve as a quick-guide to setup RISCV-CONFIG and perform a sample validation of target specifications.

Install Python

RISCV-CONFIG requires pip and python (>=3.6) to be available on your system.

Ubuntu

Ubuntu 17.10 and 18.04 by default come with python-3.6.9 which is sufficient for using riscv-config.

If you are are Ubuntu 16.10 and 17.04 you can directly install python3.6 using the Universe
repository:

$ sudo apt-get install python3.6
$ pip3 install --upgrade pip

If you are using Ubuntu 14.04 or 16.04 you need to get python3.6 from a Personal Package Archive
(PPA):

$ sudo add-apt-repository ppa:deadsnakes/ppa
$ sudo apt-get update
$ sudo apt-get install python3.6 -y
$ pip3 install --upgrade pip

You should now have 2 binaries: python3 and pip3 available in your $PATH.
You can check the versions as below:

$ python3 --version
Python 3.6.9
$ pip3 --version
pip 20.1 from <user-path>.local/lib/python3.6/site-packages/pip (python 3.6)

Centos:7

The CentOS 7 Linux distribution includes Python 2 by default. However, as of CentOS 7.7, Python 3
is available in the base package repository which can be installed using the following commands:

$ sudo yum update -y
$ sudo yum install -y python3
$ pip3 install --upgrade pip

For versions prior to 7.7 you can install python3.6 using third-party repositories, such as the
IUS repository:

$ sudo yum update -y
$ sudo yum install yum-utils
$ sudo yum install https://centos7.iuscommunity.org/ius-release.rpm
$ sudo yum install python36u
$ pip3 install --upgrade pip

You can check the versions:

$ python3 --version
Python 3.6.8
$ pip --version
pip 20.1 from <user-path>.local/lib/python3.6/site-packages/pip (python 3.6)

Using Virtualenv for Python

Many a times folks face issues in installing and managing python versions, which is actually a
major issue as many gui elements in Linux use the default python versions. In which case installing
python3.6 using the above methods might break other software. We thus advise the use of pyenv to
install python3.6.

For Ubuntu and CentosOS, please follow the steps here: https://github.com/pyenv/pyenv#basic-github-checkout

RHEL users can find more detailed guides for virtual-env here: https://developers.redhat.com/blog/2018/08/13/install-python3-rhel/#create-env

Once you have pyenv installed do the following to install python 3.6.0:

$ pyenv install 3.6.0
$ pip3 install --upgrade pip
$ pyenv shell 3.6.0

You can check the version in the same shell:

$ python --version
Python 3.6.0
$ pip --version
pip 20.1 from <user-path>.local/lib/python3.6/site-packages/pip (python 3.6)

Install RISCV-CONFIG

Note

If you are using a virtual environment make sure to enable that environment before
performing the following steps.

$ pip3 install riscv_config

To update an already installed version of RISCV-CONFIG to the latest version:

$ pip3 install -U riscv_config

To checkout a specific version of riscv_config:

$ pip3 install riscv_config--1.x.x

Once you have RISCV_CONFIG installed, executing riscv_config --help should print the following
output

riscv_config [-h] [--version] [--isa_spec YAML] [--platform_spec YAML]
 [--work_dir DIR] [--verbose]

RISC-V Configuration Validator

optional arguments:
 --isa_spec YAML, -ispec YAML
 The YAML which contains the ISA specs.
 --platform_spec YAML, -pspec YAML
 The YAML which contains the Platfrorm specs.
 --verbose debug | info | warning | error
 --version, -v Print version of RISCV-CONFIG being used
 --work_dir DIR The name of the work dir to dump the output files to.
 -h, --help show this help message and exit

RISCV_CONFIG for Developers

Clone the repository from git and install required dependencies.

Note

you will still need python (>=3.6.0) and pip.
If you are using pyenv as mentioned above, make sure to enable that environment before
performing the following steps.

$ git clone https://github.com/riscv/riscv-config.git
$ cd riscv_config
$ pip3 install -r requirements.txt

Executing python -m riscv_config.main --help should display the same help message as above.

Usage Example

$ riscv-config -ispec examples/rv32i_isa.yaml -pspec examples/rv32i_platform.yaml

Executing the above command should display the following on the terminal:

[INFO] : Input-ISA file
[INFO] : Loading input file: /scratch/git-repo/github/riscv-config/examples/rv32i_isa.yaml
[INFO] : Load Schema /scratch/git-repo/github/riscv-config/riscv_config/schemas/schema_isa.yaml
[INFO] : Initiating Validation
[INFO] : No Syntax errors in Input ISA Yaml. :)
[INFO] : Initiating post processing and reset value checks.
[INFO] : Dumping out Normalized Checked YAML: /scratch/git-repo/github/riscv-config/riscv_config_work/rv32i_isa_checked.yaml
[INFO] : Input-Platform file
[INFO] : Loading input file: /scratch/git-repo/github/riscv-config/examples/rv32i_platform.yaml
[INFO] : Load Schema /scratch/git-repo/github/riscv-config/riscv_config/schemas/schema_platform.yaml
[INFO] : Initiating Validation
[INFO] : No Syntax errors in Input Platform Yaml. :)
[INFO] : Dumping out Normalized Checked YAML: /scratch/git-repo/github/riscv-config/riscv_config_work/rv32i_platform_checked.yaml

YAML Specifications

This section provides details of the ISA and Platform spec YAML files that need to be provided by the user.

ISA YAML Spec

NOTE:

	All integer fields accept values as integers or hexadecimals(can be used interchangeably) unless specified otherwise.

	Different examples of the input yamls and the generated checked YAMLs can be found here : Examples [https://github.com/riscv/riscv-config/tree/master/examples]

Vendor

Description: Vendor name.

Examples:

Vendor: Shakti
Vendor: Incoresemi

Device

Description: Device Name.

Examples:

Device: E-Class
Device: C-Class

Constraints:

	None

ISA

Description: Takes input a string representing the ISA supported by the implementation. All extension names
(other than Zext) should be mentioned in upper-case. Z extensions should begin with an upper-case
‘Z’ followed by lower-case extension name (without Camel casing)

Examples:

ISA: RV32IMA
ISA: RV64IMAFDCZifencei

Constraints:

	Certain extensions are only valid in certain user-spec version. For, eg. Zifencei is available only in user-spec 2.3 and above.

	The ISA string must be specified as per the convention mentioned in the specifications(like subsequent Z extensions must be separated with an ‘_’)

User_Spec_Version

Description: Version number of User/Non-priveleged ISA specification as string. Please enclose the version in “” to avoid type mismatches.

Examples:

User_Spec_Version: "2.2"
User_Spec_Version: "2.3"

Constraints:

	should be a valid version later than 2.2

Privilege_Spec_Version

Description: Version number of Priveleged ISA specification as string. Please enclose the version in “” to avoid type mismatches.

Examples:

Privilege_Spec_Version: "1.10"
Privilege_Spec_Version: "1.11"

Constraints:

	should be a valid version later than 1.10

hw_data_misaligned_support

Description: A boolean value indicating whether hardware support for misaligned load/store requests exists.

Examples:

hw_data_misaligned_support: True
hw_data_misaligned_support: False

Constraints:

	None

supported_xlen

Description: list of supported xlen on the target

Examples:

supported_xlen : [32]
supported_xlen : [64, 32]
supported_xlen : [64]

Constraints:

	None

pmp_granularity

Description: Granularity of pmps

Examples:

pmp_granularity : 2
pmp_granularity : 4

Constraints:

	None

physical_addr_sz

Description: size of the physical address

Examples:

physical_addr_sz : 32

Constraints:

	None

custom_exceptions

Description: list of custom exceptions implemented

Examples:

custom_exceptions:
 - cause_val: 25
 cause_name: mycustom
 - cause_val: 26
 cause_name: mycustom2

Constraints:

	None

custom_interrupts

Description: list of custom interrupts implemented

Examples:

custom_interrupts:
 - cause_val: 25
 cause_name: mycustom
 - cause_val: 26
 cause_name: mycustom2

Constraints:

	None

CSR Template

All csrs are defined using a common template. Two variants are available: csrs with subfields and
those without

CSRs with sub-fields

<name>: # name of the csr
 description: <text> # textual description of the csr
 address: <hex> # address of the csr
 priv_mode: <D/M/H/S/U> # privilege mode that owns the register
 reset-val: <hex> # Reset value of the register. This an accumulation
 # of the all reset values of the sub-fields
 rv32: # this node and its subsequent fields can exist
 # if [M/S/U]XL value can be 1
 accessible: <boolean> # indicates if the csr is accessible in rv32 mode or not.
 # When False, all fields below will be trimmed off
 # in the checked yaml. False also indicates that
 # access-exception should be generated.
 fields: # a quick summary of the list of all fields of the
 # csr including a list of WPRI fields of the csr.
 - <field_name1>
 - <field_name2>
 - - [23,30] # A list which contains a squashed pair
 - 6 # (of form [lsb,msb]) of all WPRI bits within the
 # csr. Does not exist if there are no WPRI bits

 <field_name1>: # name of the field
 description: <text> # textual description of the csr
 shadow: <csr-name>::<field> # which this field shadows,'none' indicates that
 # this field does not shadow anything.
 msb: <integer> # msb index of the field. max: 31, min:0
 lsb: <integer> # lsb index of the field. max: 31, min:0
 implemented: <boolean> # indicates if the user has implemented this field
 # or not. When False, all
 # fields below this will be trimmed.
 type: # type of field. Can be only one of the following
 wlrl: [list of value-descriptors] # field is wlrl and the set of legal values.
 ro_constant: <hex> # field is readonly and will return the same value.
 ro_variable: True # field is readonly but the value returned depends
 # on other arch-states
 warl: # field is warl type. Refer to WARL section
 dependency_fields: [list]
 legal: [list of warl-string]
 wr_illegal: [list of warl-string]
 rv64: # this node and its subsequent fields can exist
 # if [M/S/U]XL value can be 2
 accessible: <boolean> # indicates if this register exists in rv64 mode
 # or not. Same definition as for rv32 node.
 rv128: # this node and its subsequent fields can exist if
 # [M/S/U]XL value can be 3
 accessible: <boolean> # indicates if this register exists in rv128 mode
 # or not. Same definition as for rv32 node.

CSRs without sub-fields

<name>: # name of the csr
 description: <text> # textual description of the csr
 address: <hex> # address of the csr
 priv_mode: <D/M/H/S/U> # privilege mode that owns the register
 reset-val: <hex> # Reset value of the register. This an accumulation
 # of the all reset values of the sub-fields
 rv32: # this node and its subsequent fields can exist
 # if [M/S/U]XL value can be 1
 accessible: <boolean> # indicates if the csr is accessible in rv32 mode or not.
 # When False, all fields below will be trimmed off
 # in the checked yaml. False also indicates that
 # access-exception should be generated
 fields: [] # This should be empty always.
 shadow: <csr-name>::<register> # which this register shadows,'none' indicates that
 # this register does not shadow anything.
 msb: <int> # msb index of the csr. max: 31, min:0
 lsb: <int> # lsb index of the csr. max: 31, min:0
 type: # type of field. Can be only one of the following
 wlrl: [list of value-descriptors] # field is wlrl and the set of legal values.
 ro_constant: <hex> # field is readonly and will return the same value.
 ro_variable: True # field is readonly but the value returned depends
 # on other arch-states
 warl: # field is warl type. Refer to WARL section
 dependency_fields: [list]
 legal: [list of warl-string]
 wr_illegal: [list of warl-string]
 rv64: # this node and its subsequent fields can exist
 # if [M/S/U]XL value can be 2
 accessible: <boolean> # indicates if this register exists in rv64 mode
 # or not. Same definition as for rv32 node.
 rv128: # this node and its subsequent fields can exist if
 # [M/S/U]XL value can be 3
 accessible: <boolean> # indicates if this register exists in rv128 mode

Constraints

Each csr undergoes the following checks:

	All implemented fields at the csr-level, if set to True, are checked if
they comply with the supported_xlen field of the ISA yaml.

	The reset-val is checked against compliance with the type field specified
by the user. All unimplemented fields are considered to be hardwired to 0.

For each of the above templates the following fields for all standard csrs
defined by the spec are frozen and CANNOT be modified by the user.

	description

	address

	priv_mode

	fields

	shadow

	msb

	lsb

	The type field for certain csrs (like readonly) is also constrained.

	fields names also cannot be modified for standard csrs

Only the following fields can be modified by the user:

	reset-value

	type

	implemented

Example

Following is an example of how a user can define the mtvec csr in the input ISA YAML for a
32-bit core:

mtvec:
reset-val: 0x80010000
rv32:
 accessible: true
 base:
 implemented: true
 type:
 warl:
 dependency_fields: [mtvec::mode]
 legal:
 - "mode[1:0] in [0] -> base[29:0] in [0x20000000, 0x20004000]" # can take only 2 fixed values in direct mode.
 - "mode[1:0] in [1] -> base[29:6] in [0x000000:0xF00000] base[5:0] in [0x00]" # 256 byte aligned values only in vectored mode.
 wr_illegal:
 - "mode[1:0] in [0] -> Unchanged"
 - "mode[1:0] in [1] && writeval in [0x2000000:0x4000000] -> 0x2000000"
 - "mode[1:0] in [1] && writeval in [0x4000001:0x3FFFFFFF] -> Unchanged"
 mode:
 implemented: true
 type:
 warl:
 dependency_fields: []
 legal:
 - "mode[1:0] in [0x0:0x1] # Range of 0 to 1 (inclusive)"
 wr_illegal:
 - "Unchanged"

The following is what the riscv-config will output after performing relevant checks on the
above user-input:

mtvec:
 description: MXLEN-bit read/write register that holds trap vector configuration.
 address: 773
 priv_mode: M
 reset-val: 0x80010000
 rv32:
 accessible: true
 base:
 implemented: true
 type:
 warl:
 dependency_fields: [mtvec::mode, writeval]
 legal:
 - 'mode[1:0] in [0] -> base[29:0] in [0x20000000, 0x20004000]' # can take only 2 fixed values in direct mode.
 - 'mode[1:0] in [1] -> base[29:6] in [0x000000:0xF00000] base[5:0] in [0x00]' # 256 byte aligned values only in vectored mode.
 wr_illegal:
 - 'mode[1:0] in [0] -> Unchanged'
 - 'mode[1:0] in [1] && writeval in [0x2000000:0x4000000] -> 0x2000000'
 - 'mode[1:0] in [1] && writeval in [0x4000001:0x3FFFFFFF] -> Unchanged'
 description: Vector base address.
 shadow: none
 msb: 31
 lsb: 2
 mode:
 implemented: true
 type:
 warl:
 dependency_fields: []
 legal:
 - 'mode[1:0] in [0x0:0x1] # Range of 0 to 1 (inclusive)'
 wr_illegal:
 - Unchanged

 description: Vector mode.
 shadow: none
 msb: 1
 lsb: 0
 fields:
 - mode
 - base
 rv64:
 accessible: false

WARL field Definition

Since the RISC-V privilege spec indicates several csrs and sub-fields of csrs to be WARL (Write-Any-Read-Legal),
it is necessary to provide a common scheme of representation which can precisely
define the functionality of any such WARL field/register.

Value Descriptors

Value descriptors are standard syntaxes that are used to define values in any
part of the WARL string. The 2 basic descriptors are : distinct-values and
range-values as described below:

	distinct-values - This specifies that only the particular value should be added to the set.

val

	range - This specifies that all the values greater than or equal to lower and less than or equal to upper is to be included in the set.

lower:upper

For any variable in the WARL string, the values can an amalgamation of
distinct-values and/or range-values. They are typically captured in a list as
shown in the below examples:

Example:

To represent the set {0, 1, 2, 3, 4, 5}
 [0:5]

To represent the set {5, 10, 31}
 [5, 10, 31]

To represent the set {2, 3, 4, 5, 10, 11, 12, 13, 50}
 [2:5, 10:13, 50]

WARL Node definition

A typical WARL node (used for a WARL csr or subfield) has the following skeleton
in the riscv-config:

warl:
 dependency_fields: [list of csrs/subfields that legal values depend on]
 legal: [list of strings adhering to the warl-syntax for legal assignments]
 wr_illegal: [list of strings ahdering to the warl-syntax for illegal assignments]

	dependency_fields : This is a list of csrs/subfields whose values affect
the legal values of the csr under question. :: is used as a hierarchy
separator to indicate subfields. This list can be empty to indicate that the
csr under question is not affected by any other architectural state. The
ordering of the csr/subfields has no consequence. Examples of the list are
provided below:

- dependency_fields: [mtvec::mode]
- dependency_fields: [misa::mxl, mepc]

The following keywords are reserved and can be used accordingly in the
dependency_fields list:

	writeval : to represent dependency on the current value being written
to the csr/subfield

	currval : to represent dependency on the value of the csr/subfield
before performing the write operation

Restrictions imposed: The following restrictions are imposed on the
elements of the list:

	The csrs/subfields mentioned in the list must have their
accessible/implemented fields set to True in the isa yaml.

	legal : This field is a list of strings which define the warl functions of
the csr/subfield. Each string needs to adhere to the following warl-syntax:

dependency_string -> legal_value_string

The dependency_string substring is basically a string defining a boolean
condition based on the dependent csrs (those listed in the
dependency_fields). Only when the boolean condition is satisfied, the
corresponding warl function defined in legal_value_string substring is
evaluated. A write only occurs when the evaluation of the
legal_value_string also is True. The symbol -> is used to denote
implies and is primarily used to split the string in to the above two
substrings. If none of the entries in the list evaluate to True, then the
current write value is considered illegal and the actions defined by the
wr_illegal field is carried out.

The substrings dependency_string -> is optional. If the dependency_fields list is
empty, then the substring dependency_string -> must be omitted from the warl string.

The dependency_string and the legal_value_string both follow the same
legal syntax:

<variable-name>[<hi-index>:<lo-index>] <op> <value-descriptors>

The variable-name field can be the name a csr or a subfield (without the
hierarchical delimiter ::). Within the dependency_string substring the variable
names can only be those listed in the dependency_fields list. In the
legal_value_string substring however, the variable-name should be
either writeval or the name the csr or the subfield (without the
hierarchical delimiter ::) that the warl node belongs to.

The indices fields hi-index and lo-index are used to indicate the bit
range of the variable that being looked-up or modified. The basic constraints
are that hi-index must be greater than the lo-index. If only a
single-bit is being looked-up/assigned, then :lo-index can be skipped.
This definition applies to both the dependency_string and the
legal_value_string.

The op field in the dependency_string substring can be one of in
or not in to indicate that the variable takes the values defined in the
value-descriptors field or does not take those values respectively. In
addition to the above operators, the legal_value_string can include one
more operator : bitmask. When using the bitmask operator the
value-descriptors have to be a list of two distinct-values as follows:

csr_name[hi:lo] bitmask [mask, fixedval]

Both the mask and fixedval fields are integers. All bits set in the
mask indicates writable bits of the variable. All bits bits cleared in the
mask indicate bits with a constant value which is derived from the
corresponding bit in the fixedval field.

Since the dependency_string is supposed to represent a boolean condition,
it also has the flexibility to use basic boolean operators like && and
|| around the above legal syntax. Examples are provided below:

(csrA[2:0] in [0, 1]) && (csrB[5:0] in [0:25] || csrB[5:0] in [31,30]) ->

Restrictions imposed: The following restrictions are imposed on the above
substrings:

	No element of the value-descriptors must exceed the maximum value which
can be supported by the indices of the csr/subfield.

	The csrs/subfields used in the dependency_string must be in those
listed in the dependency_fields list.

	Valid operators in the dependency_string substring are in and not in.

	Valid operators in the legal_value_string substring are in, not in and bitmask

	Within the legal_value_string substrings the legal values of all bits
of the csr/subfield must be specified. No bits must be left undefined.

	If the dependency_fields is empty, then only one legal string must be
defined in this list.

	The first combination of the dependency_string and legal_value_string
to evaluate to True, starting from the top of the list is given highest
priority to define the next legal value of the csr/subfield.

	The reset-value of the csr/subfield must cause atleast one of the legal
strings in the list to evaluate to True.

Assumptions

	Since the list of all dependency_string substrings is not required to
be exhaustively defined
by the user, if none of the dependency_strings in the list evaluate to
true, then the current write operation should be treated as an illegal
write operation, and the action defined by the wr_illegal node must be
carried out.

	If one of the dependent csrs/subfield defined in the
dependency_fields is not used in the dependency_strings, then it
implictly assumed that, the variable does not affect the legal value for
that string

	wr_illegal : This field takes in a list of strings which define the next
legal value of the field when an illegal value is being written to the
csr/subfield. Each string needs to adhere to the following syntax:

dependency_string -> update_mode

The dependency_string follows the same rules, assumptions and restrictions
described above. When the dependency_string evaluates to True the
update_mode substring defines the next legal value of the csr/subfield.
The supported values of the update_mode string are :

	Unchanged: The value remains unchanged to the current legal value held in the csr/subfield.

	<val>: A single value can also be specified

	Nextup: ceiling(writeval) i.e. the next larger or the largest element of the legal list

	Nextdown: floor(writeval) i.e. the next smallest or the smallest element of the legal list

	Nearup: celing(writeval) i.e. the closest element in the list, with the larger element being chosen in case of a tie.

	Neardown: floor(writeval) i.e. the closes element in the list, with the smaller element being chosen in case of a tie

	Max: maximum of all legal values

	Min: minimum of all legal values

	Addr:

if (val < base || val > bound)
 return Flip-MSB of field

Examples

When base of mtvec depends on the mode field.
WARL:
 dependency_fields: [mtvec::mode]
 legal:
 - "mode[1:0] in [0] -> base[29:0] in [0x20000000, 0x20004000]" # can take only 2 fixed values when mode==0.
 - "mode[1:0] in [1] -> base[29:6] in [0x000000:0xF00000] base[5:0] in [0x00]" # 256 byte aligned when mode==1
 wr_illegal:
 - "mode[1:0] in [0] -> unchanged"
 - "mode[1:0] in [1] && writeval in [0x2000000:0x4000000] -> 0x2000000" # predefined value if write value is
 - "mode[1:0] in [1] && writeval in [0x4000001:0x3FFFFFFF] -> unchanged"

When base of mtvec depends on the mode field. Using bitmask instead of range
WARL:
 dependency_fields: [mtvec::mode]
 legal:
 - "mode[1:0] in [0] -> base[29:0] in [0x20000000, 0x20004000]" # can take only 2 fixed values when mode==0.
 - "mode[1:0] in [1] -> base[29:0] bitmask [0x3FFFFFC0, 0x00000000]" # 256 byte aligned when mode==1
 wr_illegal:
 - "mode[1:0] in [0] -> unchanged" # no illegal for bitmask defined legal strings.
 - Unchanged

no dependencies. Mode field of mtvec can take only 2 legal values using range-descriptor
WARL:
 dependency_fields:
 legal:
 - "mode[1:0] in [0x0:0x1] # Range of 0 to 1 (inclusive)"
 wr_illegal:
 - "0x00"

no dependencies. using single-value-descriptors
WARL:
 dependency_fields:
 legal:
 - "mode[1:0] in [0x0,0x1] # Range of 0 to 1 (inclusive)"
 wr_illegal:
 - "0x00"

Platform YAML Spec

This section describes each node of the PLATFORM-YAML. For each node, we have identified the fields required from the user and also the various constraints involved.

reset

Description: Stores the value for the reset vector. It can either be a label or an address.

	label: A string field equal to the label in the assembly code

	address: A value equal to the absolute address where the vector is present

Examples:

reset:
 label: reset_vector
reset:
 label: 0x80000000

nmi

Description: Stores the value for the nmi vector. It can either be a label or an address.

	label: A string field equal to the label in the assembly code.

	address: A value equal to the absolute address where the vector is present.

Examples:

nmi:
 label: nmi_vector

nmi:
 address: 0x8000000

mtime

Description: Stores the fields for memory mapped mtime register.

	implemented: A boolean field indicating that the register has been implemented.

	address: A value equal to the physical address at which the register is present.

Examples:

mtime:
 implemented: True
 address: 0x458

Constraints:

	None

mtimecmp

Description: Stores the fields for memory mapped mtimecmp register.

	implemented: A boolean field indicating that the register has been implemented.

	address: A value equal to the physical address at which the register is present.

Examples:

mtimecmp:
 implemented: True
 address: 0x458

Constraints:

	None

mtval_condition_writes

Description: Stores the fields for mtval_condition_writes register.

	implemented: A Boolean value indicating whether the register is implemented.

	behaviour: A dictionary type to specify which of the exceptions modify the mtval_condition_writes reg

	e0: A string type describing the behaviour of exception 0.

	e1: A string type describing the behaviour of exception 1.

	e2: A string type describing the behaviour of exception 2.

	e3: A string type describing the behaviour of exception 3.

	e4: A string type describing the behaviour of exception 4.

	e5: A string type describing the behaviour of exception 5.

	e6: A string type describing the behaviour of exception 6.

	e7: A string type describing the behaviour of exception 7.

	e8: A string type describing the behaviour of exception 8.

	e9: A string type describing the behaviour of exception 9.

	e10: A string type describing the behaviour of exception 10.

	e11: A string type describing the behaviour of exception 11.

	e12: A string type describing the behaviour of exception 12.

	e13: A string type describing the behaviour of exception 13.

	e15: A string type describing the behaviour of exception 15.

Examples:

TBD: Provide a concrete use-case for the above.

Constraints:

	None

scause_non_standard

Description: Stores the fields for the scause register.

	implemented: A boolean field indicating that the register has been implemented.

	values: The list of exception values greater than 16 as assumed by the platform as integers.

Examples:

scause_non_standard:
 implemented: True
 value: [16,17,20]

Constraints:

	None

stval_condition_writes

Description: Stores the fields for stval_condition_writes register.

	implemented: A Boolean value indicating whether the field is implemented.

	behaviour: A dictionary type to specify which of the exceptions modify the stval_condition_writes reg

	e0: A string type describing the behaviour of exception 0.

	e1: A string type describing the behaviour of exception 1.

	e2: A string type describing the behaviour of exception 2.

	e3: A string type describing the behaviour of exception 3.

	e4: A string type describing the behaviour of exception 4.

	e5: A string type describing the behaviour of exception 5.

	e6: A string type describing the behaviour of exception 6.

	e7: A string type describing the behaviour of exception 7.

	e8: A string type describing the behaviour of exception 8.

	e9: A string type describing the behaviour of exception 9.

	e10: A string type describing the behaviour of exception 10.

	e11: A string type describing the behaviour of exception 11.

	e12: A string type describing the behaviour of exception 12.

	e13: A string type describing the behaviour of exception 13.

	e15: A string type describing the behaviour of exception 15.

Examples:

TBD: Provide a concrete use-case for the above.

Constraints:

	None

zicbo_cache_block_sz

Description: byte size of the cache block

Examples:

zicbo_cache_block_sz :
 implemented: true
 zicbom_sz: 64
 zicboz_sz: 64

Constraints:

	None

Debug YAML Spec

supported_xlen

Description: list of supported xlen on the target

Examples:

supported_xlen : [32]
supported_xlen : [64, 32]
supported_xlen : [64]

Constraints:

	None

Debug_Spec_Version

Description: Version number of Debug specification as string. Please enclose the version in “” to avoid type mismatches.

Examples:

Debug_Spec_Version: "1.0.0"
Debug_Spec_Version: "0.13.2"

Constraints:

	should be a valid version later than 1.0.0

debug_mode

Description: Boolean value indicating if the debug instructions are accessible.

Examples:

debug_mode: False

parking_loop

Description: Integer value indicating the address of the debug parking loop

Examples:

parking_loop: 0x800

Adding support for new Extensions

Adding support for a new ISA extension or an adjoining spec to RISCV-CONFIG could entail one or more of the following updates:

	Updating the ISA string and its constraints to recognize valid configurations of the new
extension

	Updating the schema_isa.yaml with new CSRs defined by the new ISA extension

	Adding new schemas and a new cli argument for supporting adjoining RISC-V specs like debug, trace, etc.

This chapter will descrive how one can go about RISC-V achieving the above tasks.

Updates to the ISA string

Modifications in Schema_isa.yaml

As shown in the example below, any new extensions and sub extensions have to be enabled by adding them in
the regex expression of the ISA [https://github.com/riscv/riscv-config/blob/master/riscv_config/schemas/schema_isa.yaml] node. Following is an instance of the node
for reference:

ISA: { type: string, required: true, check_with: capture_isa_specifics,
 regex: "^RV(32|64|128)[IE]+[ABCDEFGIJKLMNPQSTUVX]*(Zicsr|Zifencei|Zihintpause|Zam|Ztso|Zkne|Zknd|Zknh|Zkse|Zksh|Zkg|Zkb|Zkr|Zks|Zkn|Zbc|Zbb|Zbp|Zbm|Zbe|Zbf){,1}(_Zicsr){,1}(_Zifencei){,1}(_Zihintpause){,1}(_Zam){,1}(_Ztso){,1}(_Zkne){,1}(_Zknd){,1}(_Zknh){,1}(_Zkse){,1}(_Zksh){,1}(_Zkg){,1}(_Zkb){,1}(_Zkr){,1}(_Zks){,1}(_Zkn){,1}(_Zbc){,1}(_Zbb){,1}(_Zbp){,1}(_Zbm){,1}(_Zbe){,1}(_Zbf){,1}$" }

Note

If you are adding a new Z extension, note that it must be added in 2 places in the regex.
The first immediately after the standard extension in the format |Zgargle. This is to support
that fact that the new Z extension could start immediately after the standard extensions which an
underscore. The second will be after the first set of Z extensions in the format {,1}(_Zgargle).

Adding constraints in the SchemaValidator.py file

While adding a new extension, there can be certain legal and illegal combinations which cannot be
easily expressed using the regex above. To facilitate defining illegal conditions, riscv-config
allows user to define specific checks via custom python functions.

For the ISA field riscv-config uses the
_check_with_capture_isa_specifics [https://github.com/riscv/riscv-config/blob/master/riscv_config/schemaValidator.py#L46]
function to return an error if an illegal combination of the extesions (or subextension) is found.

Following is an example of the constraints imposed by the K extesion and its subset.
Within the K (Crypto-Scalar extension), subextensions Zkn, Zks, K are supersets of other Zk* abbreviations.
Thus, if the superset extension exists in the ISA, none of the corresponding subset ZK* should be present in the ISA at the same time.

Constraints used here :

1.If Zkn is present , its subset extensions Zkne, Zknh, Zknd, Zkg and Zkb cannot be present in the ISA string.

2.If Zks is present , its subset extensions Zkse, Zksh, Zkg and Zkb cannot be present in the ISA string.

3.If K extension is present , its subset extensions Zkn, Zkr, Zkne, Zknh, Zknd, Zkg and Zkb cannot be present in the ISA string.

	If B extension Zbp is present , its subset extensions Zkb cannot be present in the ISA string. Cross-checking across two different extensions can also be done. Zkb contains instructions from other subextensions in B extension like Zbm, Zbe, Zbf and Zbb , but unlike Zbp is not a proper superset.

	If B extension Zbc is present , its subset extensions Zkg cannot be present in the ISA string.

(...)
if 'Zkg' in extension_list and 'Zbc' in extension_list:
 self._error(field, "Zkg being a proper subset of Zbc (from B extension) should be ommitted from the ISA string")
if 'Zkb' in extension_list and 'Zbp' in extension_list :
 self._error(field, "Zkb being a proper subset of Zbp (from B extension) should be ommitted from the ISA string")
if 'Zks' in extension_list and (set(['Zkse', 'Zksh','Zkg','Zkb']) & set(extension_list)):
 self._error(field, "Zks is a superset of Zkse, Zksh, Zkg and Zkb. In presence of Zks the subsets must be ignored in the ISA string.")
if 'Zkn' in extension_list and (set(['Zkne','Zknd','Zknh','Zkg','Zkb']) & set(extension_list)):
 self._error(field, "Zkn is a superset of Zkne, Zknd, Zknh, Zkg and Zkb, In presence of Zkn the subsets must be ignored in the ISA string")
if 'K' in extension_list and (set(['Zkn','Zkr','Zkne','Zknd','Zknh','Zkg','Zkb']) & set(extension_list)) :
 self._error(field, "K is a superset of Zkn and Zkr , In presence of K the subsets must be ignored in the ISA string")
(...)

Assing new CSR definitions

There are two parts to addition of a new csr definition to riscv-config

Addition of new csrs to schema

The first step is to add the schema of the new csr in the schema_isa.yaml [https://github.com/riscv/riscv-config/blob/master/riscv_config/schemas/schema_isa.yaml] file.
Following is an example of how the stval csr of the “S” extension is a added to the schema.

Note

for each csr the user is free to define and re-use existing check_with functions to impose
further legal conditions. In the example below, the stval should only be implemented if the “S”
extension in the ISA field is set. This is checked using the s_check function. Any new
check_with functions must be defined in the schemaValidator.py [https://github.com/riscv/riscv-config/blob/master/riscv_config/schemaValidator.py] file

stval:
 type: dict
 schema:
 description:
 type: string
 default: The stval is a warl register that holds the address of the instruction
 which caused the exception.
 address: {type: integer, default: 0x143, allowed: [0x143]}
 priv_mode: {type: string, default: S, allowed: [S]}
 reset-val:
 type: integer
 default: 0
 check_with: max_length
 rv32:
 type: dict
 check_with: s_check
 schema:
 fields: {type: list, default: []}
 shadow: {type: string, default: , nullable: True}
 msb: {type: integer, default: 31, allowed: [31]}
 lsb: {type: integer, default: 0, allowed: [0]}
 type:
 type: dict
 check_with: wr_illegal
 schema: { warl: *ref_warl }
 default:
 warl:
 dependency_fields: []
 legal:
 - stval[31:0] in [0x00000000:0xFFFFFFFF]
 wr_illegal:
 - unchanged

 accessible:
 type: boolean
 default: true
 check_with: rv32_check
 default: {accessible: false}
 rv64:
 type: dict
 check_with: s_check
 schema:
 fields: {type: list, default: []}
 shadow: {type: string, default: , nullable: True}
 msb: {type: integer, default: 63, allowed: [63]}
 lsb: {type: integer, default: 0, allowed: [0]}
 type:
 type: dict
 check_with: wr_illegal
 schema: { warl: *ref_warl }
 default:
 warl:
 dependency_fields: []
 legal:
 - stval[63:0] in [0x00000000:0xFFFFFFFFFFFFFFFF]
 wr_illegal:
 - unchanged

 accessible:
 default: true
 check_with: rv64_check
 default: {accessible: false}

Adding default setters in checker.py

The next step in adding a new csr definition if to add its default values. This is done in
checker.py [https://github.com/riscv/riscv-config/blob/master/riscv_config/checker.py]

Example of adding a default setter for stval is show below. This code basically makes the stval
csr accessible by default when the “S” extension is enabled in the ISA string.

schema_yaml['stval']['default_setter'] = sregsetter

def sregset():
 '''Function to set defaults based on presence of 'S' extension.'''
 global inp_yaml
 temp = {'rv32': {'accessible': False}, 'rv64': {'accessible': False}}
 if 'S' in inp_yaml['ISA']:
 if 32 in inp_yaml['supported_xlen']:
 temp['rv32']['accessible'] = True
 if 64 in inp_yaml['supported_xlen']:
 temp['rv64']['accessible'] = True
 return temp

Adding support for Adjoining RISC-V specs

Adding new CLI

For supporting any new adjoining specs, they need to be supplied via a new cli (command line
interface) argument. This new argument needs to be added in the to the parser module in
Utils.py <https://github.com/riscv/riscv-config/blob/d969b7dc5b2b308bb43b0aa65932fe2e7f8c756c/riscv_config/utils.py#L106>.

The code below shows an example of how the debug spec is added as an argument to the cli parser
module:

parser.add_argument('--debug_spec', '-dspec', type=str, metavar='YAML', default=None, help='The YAML which contains the debug csr specs.')

Adding a new schema

Each new adjoining spec must have a YAML schema defined in the schemas
<https://github.com/riscv/riscv-config/tree/master/riscv_config/schemas> director.

Adding checks through checker.py and SchemaValidator.py

The user might want to add more custom checks in checker.py and SchemaValidator.py for the adjoining
spec.

For example the check_debug_specs() is a function that ensures the isa and debug specifications
conform to their schemas. For details on check_debug_specs() check here : riscv_config.checker.

Details on the checks like s_debug_check() and u_debug_check, that can also be added to
SchemaValidator.py are here: riscv_config.schemaValidator.

Modifications in Constants.py

The new schema must be added in the constants.py to detect its path globally across other files.

debug_schema = os.path.join(root, 'schemas/schema_debug.yaml')

Performing new spec checks

Finally, in the main.py file the user must call the relevant functions from checker.py for
validating the inputs against the schema.

if args.debug_spec is not None:
 if args.isa_spec is None:
 logger.error(' Isa spec missing, Compulsory for debug')
 checker.check_debug_specs(os.path.abspath(args.debug_spec), isa_file, work_dir, True, args.no_anchors)

Code Documentation

riscv_config.checker

	
riscv_config.checker.add_debug_setters(schema_yaml)

	Function to set the default setters for various fields in the debug schema

	
riscv_config.checker.add_def_setters(schema_yaml)

	Function to set the default setters for various fields in the schema

	
riscv_config.checker.add_reset_setters(schema_yaml)

	Function to set the default setters for extension subfields in the misa

	
riscv_config.checker.check_custom_specs(custom_spec, work_dir, logging=False, no_anchors=False)

	Function to perform ensure that the isa and platform specifications confirm
to their schemas. The Cerberus module is used to validate that the
specifications confirm to their respective schemas.

	Parameters:

	
	isa_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the DUT isa specification yaml file.

	logging (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean to indicate whether log is to be printed.

	Raises:

	ValidationError – It is raised when the specifications violate the
schema rules. It also contains the specific errors in each of the fields.

	Returns:

	A tuple with the first entry being the absolute path to normalized isa file
and the second being the absolute path to the platform spec file.

	
riscv_config.checker.check_debug_specs(debug_spec, isa_spec, work_dir, logging=False, no_anchors=False)

	Function to perform ensure that the isa and debug specifications confirm
to their schemas. The Cerberus module is used to validate that the
specifications confirm to their respective schemas.

	Parameters:

	
	debug_spec – The path to the DUT debug specification yaml file.

	isa_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the DUT isa specification yaml file.

	logging (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean to indicate whether log is to be printed.

	Raises:

	ValidationError – It is raised when the specifications violate the
schema rules. It also contains the specific errors in each of the fields.

	Returns:

	A tuple with the first entry being the absolute path to normalized isa file
and the second being the absolute path to the platform spec file.

	
riscv_config.checker.check_isa_specs(isa_spec, work_dir, logging=False, no_anchors=False)

	Function to perform ensure that the isa and platform specifications confirm
to their schemas. The Cerberus module is used to validate that the
specifications confirm to their respective schemas.

	Parameters:

	
	isa_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the DUT isa specification yaml file.

	logging (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean to indicate whether log is to be printed.

	Raises:

	ValidationError – It is raised when the specifications violate the
schema rules. It also contains the specific errors in each of the fields.

	Returns:

	A tuple with the first entry being the absolute path to normalized isa file
and the second being the absolute path to the platform spec file.

	
riscv_config.checker.check_mhpm(spec, logging=False)

	Check if the mhpmcounters and corresponding mhpmevents are implemented and of the same size as the
source

	
riscv_config.checker.check_pmp(spec, logging=False)

	Check if the pmp csrs are implemented correctly as per spec. The
following checks are performed:

	the number of accessible pmpaddr csrs must be 0, 16 or 64

	the number of implemented pmpcfg csrs must be 0, 16 or 64

	the pmpaddr and pmpcfgs must be implemented implemented from the
lowest numbered indices and be contiguous

	the number of accessible pmpaddr csrs and the implemented pmpcfg csrs
must be the same

	for each accesible pmpaddr csr the corresponding pmpcfg csr must be
implemented

	reset values of the accessible pmpaddr csrs must be coherent with the
pmp_granularity field.

	
riscv_config.checker.check_reset_fill_fields(spec, logging=False)

	The check_reset_fill_fields function fills the field node with the names of the sub-fields of the register and then checks whether the reset-value of the register is a legal value. To do so, it iterates over all the subfields and extracts the corresponding field value from the reset-value. Then it checks the legality of the value according to the given field description. If the fields is implemented i.e accessible in both 64 bit and 32 bit modes, the 64 bit mode is given preference.

	
riscv_config.checker.check_shadows(spec, logging=False)

	Check if the shadowed fields are implemented and of the same size as the
source

	
riscv_config.checker.delegset()

	Function to set “implemented” value for mideleg regisrer.

	
riscv_config.checker.fsset()

	Function to set defaults based on presence of ‘F’ extension.

	
riscv_config.checker.groupc(test_list)

	Generator function to squash consecutive numbers for wpri bits.

	
riscv_config.checker.hregset()

	Function to set defaults based on presence of ‘H’ extension.

	
riscv_config.checker.hregseth()

	Function to set defaults based on presence of ‘H’ extension.

	
riscv_config.checker.hset()

	Function to set defaults based on presence of ‘U’ extension.

	
riscv_config.checker.nregset()

	Function to set defaults based on presence of ‘N’ extension.

	
riscv_config.checker.nuset()

	Function to check and set defaults for all fields which are dependent on
the presence of ‘U’ extension and ‘N’ extension.

	
riscv_config.checker.reset()

	Function to set defaults to reset val of misa based on presence of ISA extensions.

	
riscv_config.checker.reset_vsstatus()

	Function to set defaults to reset val of mstatus based on the xlen and S, U extensions

	
riscv_config.checker.resetsu()

	Function to set defaults to reset val of mstatus based on the xlen and S, U extensions

	
riscv_config.checker.sregset()

	Function to set defaults based on presence of ‘S’ extension.

	
riscv_config.checker.sregseth()

	Function to set defaults based on presence of ‘S’ extension.

	
riscv_config.checker.sset()

	Function to set defaults based on presence of ‘S’ extension.

	
riscv_config.checker.trim(foo)

	Function to trim the dictionary. Any node with implemented field set to false is trimmed of all the other nodes.

	Parameters:

	foo (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary to be trimmed.

	Returns:

	The trimmed dictionary.

	
riscv_config.checker.twset()

	Function to check and set value for tw field in misa.

	
riscv_config.checker.uregset()

	Function to set defaults based on presence of ‘U’ extension.

	
riscv_config.checker.uregseth()

	Function to set defaults based on presence of ‘U’ extension.

	
riscv_config.checker.uset()

	Function to set defaults based on presence of ‘U’ extension.

riscv_config.schemaValidator

	
class riscv_config.schemaValidator.schemaValidator(*args, **kwargs)

	Custom validator for schema having the custom rules necessary for implementation and checks.

	
__init__(*args, **kwargs)

	The arguments will be treated as with this signature:

	__init__(self, schema=None, ignore_none_values=False,
	allow_unknown=False, require_all=False,
purge_unknown=False, purge_readonly=False,
error_handler=errors.BasicErrorHandler)

	
_check_with_cannot_be_false_rv32(field, value)

	Functions ensures that the field cannot be False in rv32 mode

	
_check_with_cannot_be_false_rv64(field, value)

	Functions ensures that the field cannot be False in rv64 mode

	
_check_with_capture_isa_specifics(field, value)

	Function to extract and store ISA specific information(such as xlen,user
spec version and extensions present)
and check whether the dependencies in ISA extensions are satisfied.

	
_check_with_max_length(field, value)

	Function to check whether the given value is less than the maximum value that can be stored(2^xlen-1).

	
_check_with_max_length32(field, value)

	Function to check whether the given value is less than the maximum value that can be stored(2^xlen-1).

	
_check_with_s_debug_check(field, value)

	Function ensures that the ro_constant is hardwired to zero when S is present in the ISA string
Used mainly for debug schema

	
_check_with_u_debug_check(field, value)

	Function ensures that the ro_constant is hardwired to zero when U is present in the ISA string
Used mainly for debug schema

	
_check_with_xcause_check(field, value)

	Function to verify the inputs for mcause.

	
_check_with_xtveccheck(field, value)

	Function to check whether the inputs in range type in mtvec are valid.

Utils

	
class riscv_config.utils.ColoredFormatter(*args, **kwargs)

	Class to create a log output which is colored based on level.

	
__init__(*args, **kwargs)

	Initialize the formatter with specified format strings.

Initialize the formatter either with the specified format string, or a
default as described above. Allow for specialized date formatting with
the optional datefmt argument. If datefmt is omitted, you get an
ISO8601-like (or RFC 3339-like) format.

Use a style parameter of ‘%’, ‘{’ or ‘$’ to specify that you want to
use one of %-formatting, str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] ({}) formatting or
string.Template [https://docs.python.org/3/library/string.html#string.Template] formatting in your format string.

Changed in version 3.2: Added the style parameter.

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
class riscv_config.utils.SortingHelpFormatter(prog, indent_increment=2, max_help_position=24, width=None)

	

	
riscv_config.utils.setup_logging(log_level)

	Setup logging

Verbosity decided on user input

	Parameters:

	log_level (str [https://docs.python.org/3/library/stdtypes.html#str]) – User defined log level

WARL

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 riscv_config	

 	
 	
 riscv_config.checker	

 	
 	
 riscv_config.schemaValidator	

 	
 	
 riscv_config.utils	

Index

 _
 | A
 | C
 | D
 | F
 | G
 | H
 | M
 | N
 | R
 | S
 | T
 | U

_

 	
 	__init__() (riscv_config.schemaValidator.schemaValidator method)

 	(riscv_config.utils.ColoredFormatter method)

 	_check_with_cannot_be_false_rv32() (riscv_config.schemaValidator.schemaValidator method)

 	_check_with_cannot_be_false_rv64() (riscv_config.schemaValidator.schemaValidator method)

 	_check_with_capture_isa_specifics() (riscv_config.schemaValidator.schemaValidator method)

 	
 	_check_with_max_length() (riscv_config.schemaValidator.schemaValidator method)

 	_check_with_max_length32() (riscv_config.schemaValidator.schemaValidator method)

 	_check_with_s_debug_check() (riscv_config.schemaValidator.schemaValidator method)

 	_check_with_u_debug_check() (riscv_config.schemaValidator.schemaValidator method)

 	_check_with_xcause_check() (riscv_config.schemaValidator.schemaValidator method)

 	_check_with_xtveccheck() (riscv_config.schemaValidator.schemaValidator method)

A

 	
 	add_debug_setters() (in module riscv_config.checker)

 	
 	add_def_setters() (in module riscv_config.checker)

 	add_reset_setters() (in module riscv_config.checker)

C

 	
 	check_custom_specs() (in module riscv_config.checker)

 	check_debug_specs() (in module riscv_config.checker)

 	check_isa_specs() (in module riscv_config.checker)

 	check_mhpm() (in module riscv_config.checker)

 	
 	check_pmp() (in module riscv_config.checker)

 	check_reset_fill_fields() (in module riscv_config.checker)

 	check_shadows() (in module riscv_config.checker)

 	ColoredFormatter (class in riscv_config.utils)

D

 	
 	delegset() (in module riscv_config.checker)

F

 	
 	format() (riscv_config.utils.ColoredFormatter method)

 	
 	fsset() (in module riscv_config.checker)

G

 	
 	groupc() (in module riscv_config.checker)

H

 	
 	hregset() (in module riscv_config.checker)

 	
 	hregseth() (in module riscv_config.checker)

 	hset() (in module riscv_config.checker)

M

 	
 	
 module

 	riscv_config.checker

 	riscv_config.schemaValidator

 	riscv_config.utils

N

 	
 	nregset() (in module riscv_config.checker)

 	
 	nuset() (in module riscv_config.checker)

R

 	
 	reset() (in module riscv_config.checker)

 	reset_vsstatus() (in module riscv_config.checker)

 	resetsu() (in module riscv_config.checker)

 	
 riscv_config.checker

 	module

 	
 	
 riscv_config.schemaValidator

 	module

 	
 riscv_config.utils

 	module

S

 	
 	schemaValidator (class in riscv_config.schemaValidator)

 	setup_logging() (in module riscv_config.utils)

 	SortingHelpFormatter (class in riscv_config.utils)

 	
 	sregset() (in module riscv_config.checker)

 	sregseth() (in module riscv_config.checker)

 	sset() (in module riscv_config.checker)

T

 	
 	trim() (in module riscv_config.checker)

 	
 	twset() (in module riscv_config.checker)

U

 	
 	uregset() (in module riscv_config.checker)

 	
 	uregseth() (in module riscv_config.checker)

 	uset() (in module riscv_config.checker)

supported_xlen

Description: list of supported xlen on the target

Examples:

supported_xlen : [32]
supported_xlen : [64, 32]
supported_xlen : [64]

Constraints:

	None

Debug_Spec_Version

Description: Version number of Debug specification as string. Please enclose the version in “” to avoid type mismatches.

Examples:

Debug_Spec_Version: "1.0.0"
Debug_Spec_Version: "0.13.2"

Constraints:

	should be a valid version later than 1.0.0

debug_mode

Description: Boolean value indicating if the debug instructions are accessible.

Examples:

debug_mode: False

parking_loop

Description: Integer value indicating the address of the debug parking loop

Examples:

parking_loop: 0x800

Vendor

Description: Vendor name.

Examples:

Vendor: Shakti
Vendor: Incoresemi

Device

Description: Device Name.

Examples:

Device: E-Class
Device: C-Class

Constraints:

	None

ISA

Description: Takes input a string representing the ISA supported by the implementation. All extension names
(other than Zext) should be mentioned in upper-case. Z extensions should begin with an upper-case
‘Z’ followed by lower-case extension name (without Camel casing)

Examples:

ISA: RV32IMA
ISA: RV64IMAFDCZifencei

Constraints:

	Certain extensions are only valid in certain user-spec version. For, eg. Zifencei is available only in user-spec 2.3 and above.

	The ISA string must be specified as per the convention mentioned in the specifications(like subsequent Z extensions must be separated with an ‘_’)

User_Spec_Version

Description: Version number of User/Non-priveleged ISA specification as string. Please enclose the version in “” to avoid type mismatches.

Examples:

User_Spec_Version: "2.2"
User_Spec_Version: "2.3"

Constraints:

	should be a valid version later than 2.2

Privilege_Spec_Version

Description: Version number of Priveleged ISA specification as string. Please enclose the version in “” to avoid type mismatches.

Examples:

Privilege_Spec_Version: "1.10"
Privilege_Spec_Version: "1.11"

Constraints:

	should be a valid version later than 1.10

hw_data_misaligned_support

Description: A boolean value indicating whether hardware support for misaligned load/store requests exists.

Examples:

hw_data_misaligned_support: True
hw_data_misaligned_support: False

Constraints:

	None

supported_xlen

Description: list of supported xlen on the target

Examples:

supported_xlen : [32]
supported_xlen : [64, 32]
supported_xlen : [64]

Constraints:

	None

pmp_granularity

Description: Granularity of pmps

Examples:

pmp_granularity : 2
pmp_granularity : 4

Constraints:

	None

physical_addr_sz

Description: size of the physical address

Examples:

physical_addr_sz : 32

Constraints:

	None

custom_exceptions

Description: list of custom exceptions implemented

Examples:

custom_exceptions:
 - cause_val: 25
 cause_name: mycustom
 - cause_val: 26
 cause_name: mycustom2

Constraints:

	None

custom_interrupts

Description: list of custom interrupts implemented

Examples:

custom_interrupts:
 - cause_val: 25
 cause_name: mycustom
 - cause_val: 26
 cause_name: mycustom2

Constraints:

	None

reset

Description: Stores the value for the reset vector. It can either be a label or an address.

	label: A string field equal to the label in the assembly code

	address: A value equal to the absolute address where the vector is present

Examples:

reset:
 label: reset_vector
reset:
 label: 0x80000000

nmi

Description: Stores the value for the nmi vector. It can either be a label or an address.

	label: A string field equal to the label in the assembly code.

	address: A value equal to the absolute address where the vector is present.

Examples:

nmi:
 label: nmi_vector

nmi:
 address: 0x8000000

mtime

Description: Stores the fields for memory mapped mtime register.

	implemented: A boolean field indicating that the register has been implemented.

	address: A value equal to the physical address at which the register is present.

Examples:

mtime:
 implemented: True
 address: 0x458

Constraints:

	None

mtimecmp

Description: Stores the fields for memory mapped mtimecmp register.

	implemented: A boolean field indicating that the register has been implemented.

	address: A value equal to the physical address at which the register is present.

Examples:

mtimecmp:
 implemented: True
 address: 0x458

Constraints:

	None

mtval_condition_writes

Description: Stores the fields for mtval_condition_writes register.

	implemented: A Boolean value indicating whether the register is implemented.

	behaviour: A dictionary type to specify which of the exceptions modify the mtval_condition_writes reg

	e0: A string type describing the behaviour of exception 0.

	e1: A string type describing the behaviour of exception 1.

	e2: A string type describing the behaviour of exception 2.

	e3: A string type describing the behaviour of exception 3.

	e4: A string type describing the behaviour of exception 4.

	e5: A string type describing the behaviour of exception 5.

	e6: A string type describing the behaviour of exception 6.

	e7: A string type describing the behaviour of exception 7.

	e8: A string type describing the behaviour of exception 8.

	e9: A string type describing the behaviour of exception 9.

	e10: A string type describing the behaviour of exception 10.

	e11: A string type describing the behaviour of exception 11.

	e12: A string type describing the behaviour of exception 12.

	e13: A string type describing the behaviour of exception 13.

	e15: A string type describing the behaviour of exception 15.

Examples:

TBD: Provide a concrete use-case for the above.

Constraints:

	None

scause_non_standard

Description: Stores the fields for the scause register.

	implemented: A boolean field indicating that the register has been implemented.

	values: The list of exception values greater than 16 as assumed by the platform as integers.

Examples:

scause_non_standard:
 implemented: True
 value: [16,17,20]

Constraints:

	None

stval_condition_writes

Description: Stores the fields for stval_condition_writes register.

	implemented: A Boolean value indicating whether the field is implemented.

	behaviour: A dictionary type to specify which of the exceptions modify the stval_condition_writes reg

	e0: A string type describing the behaviour of exception 0.

	e1: A string type describing the behaviour of exception 1.

	e2: A string type describing the behaviour of exception 2.

	e3: A string type describing the behaviour of exception 3.

	e4: A string type describing the behaviour of exception 4.

	e5: A string type describing the behaviour of exception 5.

	e6: A string type describing the behaviour of exception 6.

	e7: A string type describing the behaviour of exception 7.

	e8: A string type describing the behaviour of exception 8.

	e9: A string type describing the behaviour of exception 9.

	e10: A string type describing the behaviour of exception 10.

	e11: A string type describing the behaviour of exception 11.

	e12: A string type describing the behaviour of exception 12.

	e13: A string type describing the behaviour of exception 13.

	e15: A string type describing the behaviour of exception 15.

Examples:

TBD: Provide a concrete use-case for the above.

Constraints:

	None

zicbo_cache_block_sz

Description: byte size of the cache block

Examples:

zicbo_cache_block_sz :
 implemented: true
 zicbom_sz: 64
 zicboz_sz: 64

Constraints:

	None

 nav.xhtml

 Table of Contents

 		
 Welcome to RISCV-Config

 		
 Introduction

 		
 Overview

 		
 Working

 		
 Quickstart

 		
 Install Python

 		
 Ubuntu

 		
 Centos:7

 		
 Using Virtualenv for Python

 		
 Install RISCV-CONFIG

 		
 RISCV_CONFIG for Developers

 		
 Usage Example

 		
 YAML Specifications

 		
 ISA YAML Spec

 		
 Vendor

 		
 Device

 		
 ISA

 		
 User_Spec_Version

 		
 Privilege_Spec_Version

 		
 hw_data_misaligned_support

 		
 supported_xlen

 		
 pmp_granularity

 		
 physical_addr_sz

 		
 custom_exceptions

 		
 custom_interrupts

 		
 CSR Template

 		
 CSRs with sub-fields

 		
 CSRs without sub-fields

 		
 Constraints

 		
 Example

 		
 WARL field Definition

 		
 Value Descriptors

 		
 WARL Node definition

 		
 Examples

 		
 Platform YAML Spec

 		
 reset

 		
 nmi

 		
 mtime

 		
 mtimecmp

 		
 mtval_condition_writes

 		
 scause_non_standard

 		
 stval_condition_writes

 		
 zicbo_cache_block_sz

 		
 Debug YAML Spec

 		
 supported_xlen

 		
 Debug_Spec_Version

 		
 debug_mode

 		
 parking_loop

 		
 Adding support for new Extensions

 		
 Updates to the ISA string

 		
 Modifications in Schema_isa.yaml

 		
 Adding constraints in the SchemaValidator.py file

 		
 Assing new CSR definitions

 		
 Addition of new csrs to schema

 		
 Adding default setters in checker.py

 		
 Adding support for Adjoining RISC-V specs

 		
 Adding new CLI

 		
 Adding a new schema

 		
 Adding checks through checker.py and SchemaValidator.py

 		
 Modifications in Constants.py

 		
 Performing new spec checks

 		
 Code Documentation

 		
 riscv_config.checker

 		
 riscv_config.schemaValidator

 		
 Utils

 		
 WARL

_images/riscv_config-flow.png
STD ISA Spec

ISA Spec
(YML)

Custom
Validator
Platform Spec -
(YML)
(] -

= STD Platform Spec

ISA and Platform
Schema

_static/minus.png

_static/plus.png

_static/file.png

